

Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

Solution Paper

Using New Delphi Coding Styles and
Architectures
A Review of the Language Features in Delphi 2009

December 2008

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 1 -

INTRODUCTION: THE DELPHI LANGUAGE
The Delphi language, better known as Object Pascal, is a modern strong type-checked and
object-oriented language, featuring single inheritance and an object reference model. In recent
years, the language has been augmented with record methods, operators overloading for
records, class data, nested types, sealed classes, final methods and many other relevant
features. The most surprising extension was probably the introduction of class helpers, a
technique used to add new methods to an existing class or replace some of the existing
methods.

But in Delphi 2009 the new features added to the compiler are even more relevant. Besides the
extensions to the string type to support Unicode, the last version of Delphi introduces generic
data types, anonymous methods, and a number of other “minor” but very interesting features.

INTRODUCING GENERICS
As a first example of a generic class, I've implemented a key-value pair data structure. The first
code snippet below shows the data structure as it is traditionally written, with an object used to
hold the value:

type
 TKeyValue = class
 private
 FKey: string;
 FValue: TObject;
 procedure SetKey(const Value: string);
 procedure SetValue(const Value: TObject);
 public
 property Key: string read FKey write SetKey;
 property Value: TObject read FValue write SetValue;
 end;

To use this class you can create an object, set its key and value, and use it, shown in the
following snippets:

// FormCreate
kv := TKeyValue.Create;

// Button1Click
kv.Key := 'mykey';
kv.Value := Sender;

// Button2Click
kv.Value := self; // the form

// Button3Click
ShowMessage ('[' + kv.Key + ',' +
 kv.Value.ClassName + ']');

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 2 -

Generics make it possible to use a much broader definition for the value, but that's not the key
point. What's totally different (as we'll see) is that once you've instantiated the key-value generic
class, it becomes a specific class tied to a given data type. This makes your code type safer, but
I'm getting ahead of myself. Let's start with the syntax used to define the generic class:

type
 TKeyValue<T> = class
 private
 FKey: string;
 FValue: T;
 procedure SetKey(const Value: string);
 procedure SetValue(const Value: T);
 public
 property Key: string read FKey write SetKey;
 property Value: T read FValue write SetValue;
 end;

In this class definition, there is one unspecified type that is indicated by the placeholder T. The
generic TKeyValue<T> class uses the unspecified type as the type of the property value field
and the setter method parameter. The methods are defined as usual; however, even though
they have to do with the generic type, their definition contains the complete name of the class,
including the generic type:

procedure TKeyValue<T>.SetKey(const Value: string);
begin
 FKey := Value;
end;

procedure TKeyValue<T>.SetValue(const Value: T);
begin
 FValue := Value;
end;

To use the class, instead, you have to fully qualify it, providing the actual value of the generic
type. For example, you can now declare a key-value object hosting button as value by writing:

kv: TKeyValue<TButton>;

The full name is also required when creating an instance because this is the actual type name
(the generic, uninstantiated type name is like a type construction mechanism).

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 3 -

Using a specific type of the value for the key-value pair makes the code much more robust, as
you can now only add TButton (or derived) objects to the key-value pair and can use the
various methods of the extracted object. These are some snippets:

// FormCreate
kv := TKeyValue<TButton>.Create;

// Button1Click
kv.Key := 'mykey';
kv.Value := Sender as TButton;

// Button2Click
kv.Value := Sender as TButton; // was "self"

// Button3Click
ShowMessage ('[' + kv.Key + ',' + kv.Value.Name + ']');

When assigning a generic object in the previous version of the code we could add either a
button or a form. Now we can use only a button, a rule enforced by the compiler. Likewise,
rather than a generic kv.Value.ClassName in the output, we can use the component
Name, or any other property of TButton.

Of course, we can also mimic the original program by declaring the key-value pair as:

kvo: TKeyValue<TObject>;

In this version of the generic key-value pair class, we can add any object as value. However, we
won't be able to do much on the extracted objects unless we cast them to a more specific type.
To find a good balance, you might want to go for something in between specific buttons and
any object and request the value to be a component:

kvc: TKeyValue<TComponent>;

Finally, we can create an instance of the generic key-value pair class that doesn't store object
values, but rather plain integers, as shown:

kvi: TKeyValue<Integer>;

TYPE RULES ON GENERICS
When you declare an instance of a generic type, this type gets a specific version, which is
enforced by the compiler in all subsequent operations. So, if you have a generic class like:

type
 TSimpleGeneric<T> = class
 Value: T;
 end;

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 4 -

As you declare a specific object with a given type, you cannot assign a different type to the
Value field. Given the following two objects, some of the assignments below are incorrect:

var
 sg1: TSimpleGeneric<string>;
 sg2: TSimpleGeneric<Integer>;
begin
 sg1 := TSimpleGeneric<string>.Create;
 sg2 := TSimpleGeneric<Integer>.Create;

 sg1.Value := 'foo';
 sg1.Value := 10; // Error
 // E2010 Incompatible types: 'string' and 'Integer'

 sg2.Value := 'foo'; // Error
 // E2010 Incompatible types: 'Integer' and 'string'
 sg2.Value := 10;

Once you define a specific type the generic declaration, this is enforced by the compiler, as you
should expect by a strongly-typed language like Object Pascal. The type checking is also in
place for the generic objects as a whole. As you specify the generic parameter for an object,
you cannot assign to it a similar generic type based on a different and incompatible type
instance. If this seems confusing, an example should help clarify:

sg1 := TSimpleGeneric<Integer>.Create; // Error
// E2010 Incompatible types:
// 'TSimpleGeneric<System.string>'
// and 'TSimpleGeneric<System.Integer>'

The type compatibility rule is by structure and not by type name but you cannot assign to a
generic type instance a different and incompatible one.

GENERICS IN DELPHI
In the previous example, we saw how you can define and use a generic class which is one of the
most relevant extensions to the Object Pascal language since Delphi 3 introduced interfaces. I
decided to introduce the feature with an example before delving into the technicalities, which
are quite complex and very relevant at the same time. After covering generics from a language
perspective we'll get back to more examples, including the use and definition of generic
container classes, one of the main reasons this technique was added to the language.
We have seen that when you define a class in Delphi 2009, you can now add an extra
“parameter” within angle brackets to hold the place of a type to be provided later:

type
 TMyClass <T> = class
 ...
 end;

The generic type can be used as the type of a field (as I did in the previous example), as the
type of a property, as the type of a parameter or return value of a function and more. Notice

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 5 -

that it is not compulsory to use the type for a local field (or array) as there are cases in which the
generic type is used only as a result, a parameter, or is not used in the declaration of the class,
but only in the definition of some of its methods.

This form of extended or generic type declaration is available for classes and also for records (in
the most recent versions of Delphi records can also have methods and overloaded operators, in
case you didn’t notice). You cannot declare a generic global function unlike C++, but you can
declare a generic class with a single class method, which is almost the same thing.

The implementation of generics in Delphi, like in other static languages, is not based on a
runtime framework, but is handled by the compiler and the linker, and leaves almost nothing to
runtime mechanism. Unlike virtual function calls that are bound at runtime, template methods
are generated once for each template type you instantiate, and are generated at compile time!
We'll see the possible drawbacks of this approach, but, on the positive side, it implies that the
generic classes are as efficient as plain classes, or even more efficient as the need for runtime
cats is reduced.

GENERIC TYPE FUNCTIONS
The biggest problem with the generic type definitions we’ve seen so far is that you can do very
little with objects of the generic type. There are two techniques you can use to overcome this
limitation. The first is to make use of the few special functions of the runtime library that
specifically support generic types. The second (and much more powerful) is to define generic
classes with constraints on the types you can use.

I'll focus on the first part in this section and the constraints in the next section. As I mentioned,
there is a brand new function and two classic ones specifically modified to work on the
parametric type (T) of generic type definition:

• Default(T) is a brand new function that returns the empty or “zero value” or null value

for the current type; this can be zero, an empty string, nil, and so on;
• TypeInfo (T) returns the pointer to the runtime information for the current version of

the generic type;
• SizeOf (T) returns memory size of the type in bytes.

The following example has a generic class showing the three generic type functions in action:

type
 TSampleClass <T> = class
 private
 data: T;
 public
 procedure Zero;
 function GetDataSize: Integer;
 function GetDataName: string;
 end;

function TSampleClass<T>.GetDataSize: Integer;
begin
 Result := SizeOf (T);

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 6 -

end;

function TSampleClass<T>.GetDataName: string;
begin
 Result := GetTypeName (TypeInfo (T));
end;

procedure TSampleClass<T>.Zero;
begin
 data := Default (T);
end;

In the GetDataName method, I used the GetTypeName function (or the TypInfo unit) rather
than directly accessing the data structure because it performs the proper UTF-8 conversion from
the encoded ShortString value holding the type name.

Given the declaration above, you can compile the following test code that repeats itself three
times on three different generic type instances. I've omitted the repeated code, but kept the
statements used to access the data field, as they change depending on the actual type:

var
 t1: TSampleClass<Integer>;
 t2: TSampleClass<string>;
 t3: TSampleClass<double>;
begin
 t1 := TSampleClass<Integer>.Create;
 t1.Zero;
 Log ('TSampleClass<Integer>');
 Log ('data: ' + IntToStr (t1.data));
 Log ('type: ' + t1.GetDataName);
 Log ('size: ' + IntToStr (t1.GetDataSize));

 t2 := TSampleClass<string>.Create;
 ...
 Log ('data: ' + t2.data);

 t3 := TSampleClass<double>.Create;
 ...
 Log ('data: ' + FloatToStr (t3.data));

Running this code produces the following output:

TSampleClass<Integer>
data: 0
type: Integer
size: 4
TSampleClass<string>
data:
type: string
size: 4
TSampleClass<double>

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 7 -

data: 0
type: Double
size: 8

Notice that, oddly enough, you can use the generic type functions also on specific types outside
of the contest of generic classes. For example, you can write:

var
 I: Integer;
 s: string;
begin
 I := Default (Integer);
 Log ('Default Integer': + IntToStr (I));

 s := Default (string);
 Log ('Default String': + s);

 Log ('TypeInfo String': +
 GetTypeName (TypeInfo (string));

While the calls to Default are brand new in Delphi 2009 (although not terribly useful outside
of templates), the call to TypeInfo at the end was already possible in past versions of Delphi.
This is the trivial output:

Default Integer: 0
Default String:
TypeInfo String: string

GENERIC CONSTRAINTS
As we have seen, there is very little you can do with the methods of your generic class over the
generic type value. You can pass it around (that is, assign it) and perform the limited operations
allowed by the generic type functions I've just covered.

To be able to perform some actual operations of the generic type of class, you generally place a
constraint on it. For example, when you limit the generic type to be a class, the compiler will let
you call all of the TObject methods on it. You can also further constrain the class to be part of
a given hierarchy or implement a specific interface.

CLASS CONSTRAINTS
The simplest constraint you can adopt is a class constraint. To use it, you declare generic type
as:

type
 TSampleClass <T: class> = class

By specifying a class constraint, you indicate that you can use only object types as generic
types.

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 8 -

With the following declaration:

type
 TSampleClass <T: class> = class
 private
 data: T;
 public
 procedure One;
 function ReadT: T;
 procedure SetT (t: T);
 end;

You can create the first two instances but not the third:

 sample1: TSampleClass<TButton>;
 sample2: TSampleClass<TStrings>;
 sample3: TSampleClass<Integer>; // Error

The compiler error caused by this last declaration would be:

E2511 Type parameter 'T' must be a class type

What's the advantage of indicating this constraint? In the generic class methods you can now
call any TObject method, including virtual ones! This is the One method of the

TSampleClass generic class:

procedure TSampleClass<T>.One;
begin
 if Assigned (data) then
 begin
 Form30.Log('ClassName: ' + data.ClassName);
 Form30.Log('Size: ' + IntToStr (data.InstanceSize));
 Form30.Log('ToString: ' + data.ToString);
 end;
end;

You can play with the program to see its actual effect as it defines and uses a few instances of
the generic type, as in the following code snippet:

var
 sample1: TSampleClass<TButton>;
begin
 sample1 := TSampleClass<TButton>.Create;
 try
 sample1.SetT (Sender as TButton);
 sample1.One;
 finally
 sample1.Free;
 end;

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 9 -

Notice that by declaring a class with a customized ToString method, this custom version will
get called when the data object is of the specific type, regardless of the actual type provided to
the generic type. In other words, if you have a TButton descendant such as:

type
 TMyButton = class (TButton)
 public
 function ToString: string; override;
 end;

You can pass this object as value of a TSampleClass<TButton> or define a specific
instance of the generic type, and in both cases calling One ends up executing the specific
version of ToString:

var
 sample1: TSampleClass<TButton>;
 sample2: TSampleClass<TMyButton>;
 mb: TMyButton;
begin
 ...
 sample1.SetT (mb);
 sample1.One;
 sample2.SetT (mb);
 sample2.One;

Similar to a class constraint, you can have a record constraint, declared as:

type
 TSampleRec <T: record> = class

However, there is very little that different records have in common (there is no common
ancestor), so this declaration is somewhat limited.

SPECIFIC CLASS CONSTRAINTS
If your generic class needs to work with a specific subset of classes (a specific hierarchy), you
might want to resort to specifying a constraint based on a given base class. For example, if you
declare:

type
 TCompClass <T: TComponent> = class

Instances of this generic class can be applied only to component classes; that is, any
Tcomponent descendant class. This lets you have a very specific generic type (yes it sounds
odd, but that's what it really is) and the compiler will let you use all of the methods of the
TComponent class while working on the generic type.

If this seems extremely powerful, think twice. If you consider what you can achieve with
inheritance and type compatibly rules, you might be able to address the same problem using

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 10 -

traditional, object-oriented techniques rather than having to use generic classes. I'm not saying
that a specific class constraint is never useful, but it is certainly not as powerful as a higher-level
class constraint or (something I find very interesting) an interface-based constraint.

INTERFACE CONSTRAINTS
Rather than constraining a generic class to a given class, it is generally more flexible to accept
only classes implementing a given interface as the type parameter. This makes it possible to call
the interface on instances of the generic type.
That said, the use of interface constraints for generics is also very common in the .NET
framework. Let me start by showing you an example.

First, we need to declare an interface:

type
 IGetValue = interface
 ['{60700EC4-2CDA-4CD1-A1A2-07973D9D2444}']
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 property Value: Integer
 read GetValue write SetValue;
 end;

Next, we can define a class that implements it:

type
 TGetValue = class (TSingletonImplementation, IGetValue)
 private
 fValue: Integer;
 public
 constructor Create (Value: Integer = 0);
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 end;

Things start to get interesting when you define a generic class limited to types that implement
the given interface:

type
 TInftClass <T: IGetValue> = class
 private
 val1, val2: T; // or IGetValue
 public
 procedure Set1 (val: T);
 procedure Set2 (val: T);
 function GetMin: Integer;
 function GetAverage: Integer;
 procedure IncreaseByTen;
 end;

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 11 -

Notice that in the code for the generic methods of this class we can write:

function TInftClass<T>.GetMin: Integer;
begin
 Result := min (val1.GetValue, val2.GetValue);
end;

procedure TInftClass<T>.IncreaseByTen;
begin
 val1.SetValue (val1.GetValue + 10);
 val2.Value := val2.Value + 10;
end;

With all these definitions, we can now use the generic class as follows:

procedure TFormIntfConstraint.btnValueClick(
 Sender: TObject);
var
 iClass: TInftClass<TGetValue>;
begin
 iClass := TInftClass<TGetValue>.Create;
 iClass.Set1 (TGetValue.Create (5));
 iClass.Set2 (TGetValue.Create (25));
 Log ('Average: ' + IntToStr (iClass.GetAverage));
 iClass.IncreaseByTen;
 Log ('Min: ' + IntToStr (iClass.GetMin));
end;

To show the flexibility of this generic class, I've created another totally different implementation
for the interface:

 TButtonValue = class (TButton, IGetValue)
 public
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 class function MakeTButtonValue (Owner: TComponent;
 Parent: TWinControl): TButtonValue;
 end;

{ TButtonValue }

function TButtonValue.GetValue: Integer;
begin
 Result := Left;
end;

procedure TButtonValue.SetValue(Value: Integer);
begin
 Left := Value;
end;

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 12 -

The class function creates a button within a Parent control in a random position and is used in
the following sample code:

procedure TFormIntfConstraint.btnValueButtonClick(
 Sender: TObject);
var
 iClass: TInftClass<TButtonValue>;
begin
 iClass := TInftClass<TButtonValue>.Create;
 iClass.Set1 (TButtonValue.MakeTButtonValue (
 self, ScrollBox1));
 iClass.Set2 (TButtonValue.MakeTButtonValue (
 self, ScrollBox1));
 Log ('Average: ' + IntToStr (iClass.GetAverage));
 Log ('Min: ' + IntToStr (iClass.GetMin));
 iClass.IncreaseByTen;
 Log ('New Average: ' + IntToStr (iClass.GetAverage));
end;

INTERFACE REFERENCES VS. GENERIC INTERFACE CONSTRAINTS
In the last example I defined a generic class that works with any object implementing a given
interface. I could have obtained a similar effect by creating a standard (non-generic) class based
on interface references. In fact, I could have defined a class like:

type
 TPlainInftClass = class
 private
 val1, val2: IGetValue;
 public
 procedure Set1 (val: IGetValue);
 procedure Set2 (val: IGetValue);
 function GetMin: Integer;
 function GetAverage: Integer;
 procedure IncreaseByTen;
 end;

What is the difference between these two approaches? One difference is that in the class above
you can pass two objects of different types to the setter methods provided their classes both
implement the given interface. While in the generic version you can pass (to any given instance
of the generic class) only objects of the given type. So, the generic version is more conservative
and strict in terms of type checking.

In my opinion, the key difference is that using the interface-based version means using the
Delphi reference counting mechanism, while using the generic version the class deals with plain
objects of a given type and reference counting is not involved. Moreover, the generic version
could have multiple constraints (like a constructor constraint) and lets you use the various
generic-functions (like asking for the actual type of the generic type). This is something you
cannot do when using an interface. (When you are working with an interface, in fact, you have
no access to the base TObject method).

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 13 -

In other words, using a generic class with interface constraints makes it possible to have the
benefits of interfaces without their nuisances. Still, it is relevant to notice that in most cases the
two approaches are equivalent, and in others, the interface-based solution is more flexible.

USING PREDEFINED GENERIC CONTAINERS
Since the early days of templates in the C++ language, one of the most obvious uses of generic
classes has been the definition of generic containers, lists, or containers. When you define a list
of objects, like Delphi's own TObjectList, in fact, you have a list that can potentially hold
objects of any kind. Using either inheritance or composition you can indeed define custom
container for a specific type, but this is a tedious (and potentially error-prone) approach.

Delphi 2009 defines a small set of generic container classes you can find in the new
Generics.Collections unit. The four core container classes are all implemented in an
independent way (they don't inherit from the other), all implemented in a similar fashion (using
a dynamic array), and all mapped to the corresponding non-generic container class of the
Contnrs unit:

type
 TList<T> = class
 TQueue<T> = class
 TStack<T> = class
 TDictionary<TKey,TValue> = class

The logical difference among these classes should be quite obvious considering their names. A
good way to test them is to figure out how many changes you have to perform on existing code
that uses a non-generic container class. As an example, I've taken an actual sample program of
the Mastering Delphi 2005 book and converted it to use generics.

USING TLIST<T>
The sample program has a unit that defines a TDate class and the main form is used to refer to
a TList of dates. As a starting point, I added a uses clause referring to Generics.Collections,
and then I changed the declaration of the main form field to:

 private
 ListDate: TList <TDate>;

Of course, the main form OnCreate event handler that creates the list needs to be updated as
well, becoming:

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListDate := TList<TDate>.Create;
end;

Now we can try to compile the rest of the code as it is. The program has a “wanted” bug, trying
to add a TButton object to the list. The corresponding code used to compile, now fails:

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 14 -

procedure TForm1.ButtonWrongClick(Sender: TObject);
begin
 // add a button to the list
 ListDate.Add (Sender); // Error:
 // E2010 Incompatible types: 'TDate' and 'TObject'
end;

The new list of dates is more robust in terms of type-checking than the original generic list
pointers. Having removed that line the program compiles and works. Still, it can be improved.

This is the original code used to display all of the dates of the list in a ListBox control:

var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add (
 (TObject(ListDate [I]) as TDate).Text);

Notice the rather ugly cast, due to the fact that the program was using a list of pointers
(TList), and not a list of objects (TObjectList). The reason might as well be that the
original demo predates the TObjectList class! One can easily improve the program by
writing:

 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add (ListDate [I].Text);

Another improvement to this snippet could come from using an enumeration (something the
predefined generic lists fully support) rather than a plain for loop:

var
 aDate: TDate;
begin
 for aDate in ListDate do
 begin
 Listbox1.Items.Add (aDate.Text);
 end;

Finally, the program could be improved by using a generic TObjectList owning the TDate
objects, but that's a topic for the next section.

As I mentioned earlier, the TList<T> generic class has a high degree of compatibility. There
are all the classic methods, like Add, Insert, Remove, and IndexOf. The Capacity and
Count properties are there as well. Oddly, Items become Item, but being the default
property you seldom explicitly refer to it anyway.

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 15 -

SORTING A TLIST<T>
What is interesting to understand is how sorting works (my goal here is to add sorting support
to the previous example). The Sort method is defined as:

procedure Sort; overload;
procedure Sort(const AComparer: IComparer<T>); overload;

Where the IComparer<T> interface is declared in the Generics.Defaults unit. If you call the
first version the program it will use the default comparer, initialized by the default constructor of
TList<T>. In our case, this will be useless.

What we need to do instead, is to define a proper implementation of the IComparer<T>
interface. For type compatibility, we need to define an implementation that works on the
specific TDate class. There are multiple ways to accomplish this, including using anonymous
methods (covered in the next section).It is also an interesting technique because it gives me the
opportunity to show several usage patterns of generics and takes advantage of a structural class
that is part of the unit Generics.Defaults that is called TComparer. The class is defined as an
abstract and generic implementation of the interface, as follows:

type
 TComparer<T> = class(TInterfacedObject, IComparer<T>)
 public
 class function Default: IComparer<T>;
 class function Construct(
 const Comparison: TComparison<T>): IComparer<T>;
 function Compare(
 const Left, Right: T): Integer; virtual; abstract;
 end;

What we have to do is instantiate this generic class for the specific data type (TDate, in the
example) and also inherit a concrete class that implements the Compare method for the
specific type. The two operations can be done at once, using a coding idiom that takes a while
to digest:

type
 TDateComparer = class (TComparer<TDate>)
 function Compare(
 const Left, Right: TDate): Integer; override;
 end;

If this code looks very unusual to you, you're not alone. The new class is inherited from a specific
instance of the generic class, something you could express in two separate steps as:

type
 TAnyDateComparer = TComparer<TDate>;
 TMyDateComparer = class (TAnyDateComparer)
 function Compare(
 const Left, Right: TDate): Integer; override;
 end;

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 16 -

You can find the actual implementation of the Compare function in the source code, though
that's not the key point I want to stress here. Keep in mind, though, that even if you sort the list
its IndexOf method won't take advantage of it (unlike the TStringList class).

SORTING WITH AN ANONYMOUS METHOD
The sorting code presented in the previous section looks quite complicated and it really is. It
would be much easier and cleaner to pass the sorting function to the Sort method directly. In
the past, this was generally achieved by passing a function pointer. In Delphi 2009, this can be
obtained by passing an anonymous method.

The IComparer<T> parameter of the Sort method of the TList<T> class, in fact, can be
used by calling the Construct method of TComparer<T>, passing as parameter an
anonymous method defined as:

type
 TComparison<T> = reference to function(
 const Left, Right: T): Integer;

In practice you can write a type-compatible function and pass it as parameter:

function DoCompare (const Left, Right: TDate): Integer;
var
 ldate, rDate: TDateTime;
begin
 lDate := EncodeDate(Left.Year, Left.Month, Left.Day);
 rDate := EncodeDate(Right.Year, Right.Month, Right.Day);
 if lDate = rDate then
 Result := 0
 else if lDate < rDate then
 Result := -1
 else
 Result := 1;
end;

procedure TForm1.ButtonAnonSortClick(Sender: TObject);
begin
 ListDate.Sort (TComparer<TDate>.Construct (DoCompare));
end;

If this looks too traditional, consider you could also avoid the declaration of a separate function
and pass it (its source code) as parameter to the Construct method, as follows:

procedure TForm1.ButtonAnonSortClick(Sender: TObject);
begin
 ListDate.Sort (TComparer<TDate>.Construct (
 function (const Left, Right: TDate): Integer
 var
 ldate, rDate: TDateTime;
 begin

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 17 -

 lDate := EncodeDate(Left.Year,
 Left.Month, Left.Day);
 rDate := EncodeDate(Right.Year,
 Right.Month, Right.Day);
 if lDate = rDate then
 Result := 0
 else if lDate < rDate then
 Result := -1
 else
 Result := 1;
 end));
end;

This example should have whetted your appetite for learning more about anonymous methods!
For sure, this last version is much simpler to write than the original covered in the previous
section. Although, having a derived class might look cleaner and be easier to understand for
many Delphi developers.

ANONYMOUS METHODS (OR CLOSURES)
The Delphi language has had procedural types (types declaring pointers to procedures and
functions) and method pointers (types declaring pointers to methods) for a long time. Although
you seldom use them directly, these are key features of Delphi that every developer works with.
In fact, method pointers types are the foundation for event handlers in the VCL: every time you
declare an event handler, even a pure Button1Click you are declaring a method that will be
connected to an event (the OnClick event, in this case) using a method pointer.

Anonymous methods extend this feature by letting you pass the actual code of a method as a
parameter, rather than the name of a method defined elsewhere. This is not the only difference,
though. What makes anonymous methods very different from other techniques is the way they
manage the lifetime of local variables.

Anonymous methods are a brand new feature for Delphi, but they've been around in different
forms and with different names for many years in other programming languages--most notably
dynamic languages. I've had extensive experience with closures in JavaScript, particularly with
the jQuery (www.jquery.org) library and AJAX calls. The corresponding feature in C# is
anonymous delegate.

But I don't want to devote time comparing closures and related techniques in the various
programming languages, but instead describe in detail how they work in Delphi 2009.

SYNTAX AND SEMANTIC OF ANONYMOUS METHODS
An anonymous method in Delphi is a mechanism to create a method value in an expression
context. A rather cryptic definition, but one that underlines the key difference from method
pointers: the expression context. Before we get to this, let me start from the beginning with a
very simple code example.

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 18 -

This is the declaration of an anonymous method type, something you need as Delphi remains a
strongly-typed language:

type
 TIntProc = reference to procedure (n: Integer);

This differs from a reference method only in the keywords being used for the declaration:

type
 TIntMethod = procedure (n: Integer) of object;

AN ANONYMOUS METHOD VARIABLE
Once you have an anonymous method type you can declare a variable of this type, assign a
type-compatible anonymous method, and call the method through the variable:

procedure TFormAnonymFirst.btnSimpleVarClick(
 Sender: TObject);
var
 anIntProc: TIntProc;
begin
 anIntProc :=
 procedure (n: Integer)
 begin
 Memo1.Lines.Add (IntToStr (n));
 end;
 anIntProc (22);
end;

Notice the syntax used to assign an actual procedure with in-place code to the variable. This is
something never seen in Pascal in the past.

AN ANONYMOUS METHOD PARAMETER
As a more interesting example (with an even more surprising syntax), we can pass an
anonymous method as parameter to a function. Suppose you have a function taking an
anonymous method parameter:

procedure CallTwice (value: Integer;
 anIntProc: TIntProc);
begin
 anIntProc (value);
 Inc (value);
 anIntProc (value);
end;

The function calls the method passed as parameter twice with two consecutive integer values,
the one passed as parameter and the following one. You call the function by passing an actual
anonymous method to it, with directly in-place code that looks surprising:

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 19 -

procedure TFormAnonymFirst.btnProcParamClick(
 Sender: TObject);
begin
 CallTwice (48,
 procedure (n: Integer)
 begin
 Memo1.Lines.Add (IntToHex (n, 4));
 end);
 CallTwice (100,
 procedure (n: Integer)
 begin
 Memo1.Lines.Add (FloatToStr(Sqrt(n)));
 end);
end;

From the syntax point of view, notice the procedure passed as parameter with parentheses and
not terminated by a semicolon. The actual effect of the code is to call the IntToHex with 48
and 49 and the FloatToStr on the square root of 100 and 101, producing the following
output:

0030
0031
10
10.0498756211209

USING LOCAL VARIABLES
Even with a different and “less nice” syntax, we could have achieved the same effect using
method pointers. What makes the anonymous methods clearly different is the way they can
refer to local variables of the calling method. Consider the following code:

procedure TFormAnonymFirst.btnLocalValClick(
 Sender: TObject);
var
 aNumber: Integer;
begin
 aNumber := 0;
 CallTwice (10,
 procedure (n: Integer)
 begin
 Inc (aNumber, n);
 end);
 Memo1.Lines.Add (IntToStr (aNumber));
end;

Here the method (still passed to the CallTwice procedure) uses the local parameter n, but
also a local variable in the calling context, aNumber. What's the effect? The two calls of the
anonymous method will modify the local variable, adding the parameter to it, 10 the first time
and 11 the second. The final value of aNumber will be 21.

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 20 -

EXTENDING THE LIFETIME OF LOCAL VARIABLES
The previous example shows an interesting effect, but with a sequence of nested function call,
and the fact you can use the local variable isn't that surprising. The power of anonymous
methods, however, lies in the fact they can use a local variable and also extend its lifetime as
needed. An example will prove the point more than a lengthy explanation.

I've added (using class completion) to the TFormAnonymFirst form class a property of an
anonymous method pointer type (well, actually the same anonymous method pointer type I've
used in all of the code for the project):

 private
 FAnonMeth: TIntProc;
 procedure SetAnonMeth(const Value: TIntProc);
 public
 property AnonMeth: TIntProc
 read FAnonMeth write SetAnonMeth;

Then, I've added two more buttons to the form. The first saves an anonymous method in the
property that uses a local variable (more or less like in the previous btnLocalValClick
method):

procedure TFormAnonymFirst.btnStoreClick(
 Sender: TObject);
var
 aNumber: Integer;
begin
 aNumber := 3;
 AnonMeth :=
 procedure (n: Integer)
 begin
 Inc (aNumber, n);
 Memo1.Lines.Add (IntToStr (aNumber));
 end;
end;

When this method executes, the anonymous method is not executed, only stored. The local
variable aNumber is initialized to zero, is not modified, goes out of local scope (as the method
terminates), and is displaced. At least, that is what you'd expect from a standard Delphi code.

The second button I added to the form for this specific step is called the anonymous method
and is stored in the AnonMeth property:

procedure TFormAnonymFirst.btnCallClick(Sender: TObject);
begin
 if Assigned (AnonMeth) then
 begin
 CallTwice (2, AnonMeth);
 end;
end;

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 21 -

When this code is executed, it calls on an anonymous method that uses the local variable
aNumber of a method that's not on the stack any more. However, since anonymous methods
capture their execution context, the variable is still there and can be used as long as that given
instance of the anonymous method (that is, a reference to the method) is around.

As further proof, do the following: press the Store button once, the Call button two times, and
you'll see that same captured variable being used:

5
8
10
13

Now press Store once more and press Call again. Why is the value of the local variable reset? By
assigning a new anonymous methods instance, the old one is deleted (along with its own
execution context) and a new execution context is captured, including a new instance of the
local variable. The full sequence Store – Call – Call – Store – Call produces:

5
8
10
13
5
8

It is the implication of this behavior, resembling what some other languages do, that makes
anonymous methods an extremely powerful language feature that you can use to implement
something literally impossible in the past.

OTHER NEW LANGUAGE FEATURES
With so many new relevant features in the Object Pascal language, it is easy to miss some of the
minor ones.

A COMMENTED DEPRECATED DIRECTIVE
The deprecated directive (used to indicate a symbol) is still available for compatibility
reasons only but can now be followed by a string that will be displayed as part of the compiler
warning. If you define a procedure and call it as in the following code snippet:

procedure DoNothing;
 deprecated 'use DoSomething instead';
begin
end;

procedure TFormMinorLang.btnDepracatedClick(
 Sender: TObject);
begin
 DoNothing;
end;

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 22 -

At the call location (in the btnDepracatedClick method) you'll get the following warning:

W1000 Symbol 'DoNothing' is deprecated: 'use DoSomething
instead'

This is much better than the previous practice of adding a comment to the declaration of the
deprecated symbol: having a to click on the error message to get to the source code line in
which this is used, jump to the declaration location, and find the comment. Needless to say, the
code above won't compile in Delphi 2007, where you get the error:

E2029 Declaration expected but string constant found

The new feature of deprecated is used rather heavily in the Delphi 2009 RTL and VCL, while
I'm expecting that third party vendors will have to refrain from using it because of the
incompatibility with past versions of the compiler.

EXIT WITH A VALUE
Traditionally, Pascal functions used to assign a result by using the function name, as in:

function ComputeValue: Integer;
begin
 ...
 ComputeValue := 10;
end;

Delphi has long provided an alternate coding, using the Result identifier to assign a return
value to a function:

function ComputeValue: Integer;
begin
 ...
 Result := 10;
end;

The two approaches are identical and do not alter the flow of the code. If you need to assign
the function result and stop the current execution you can use two separate statements, assign
the result and then call Exit. The following code snippet (looking for a string containing a
given number in a string list) shows a classic example of this approach:

function FindExit (sl: TStringList; n: Integer): string;
var
 I: Integer;
begin
 for I := 0 to sl.Count do
 if Pos (IntToStr (n), sl[I]) > 0 then
 begin
 Result := sl[I];
 Exit;
 end;
end;

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 23 -

In Delphi 2009, you can replace the two statements with a new special call to Exit, passing to
it the return value of the function, in a way resembling the C language return statement. So
you can write the code above in a more compact version (also because with a single statement
you can avoid the begin/end):

function FindExitValue (
 sl: TStringList; n: Integer): string;
var
 I: Integer;
begin
 for I := 0 to sl.Count do
 if Pos (IntToStr (n), sl[I]) > 0 then
 Exit (sl[I]);
end;

NEW AND ALIASED INTEGRAL TYPES
Although this is not strictly a compiler change, but rather, an addition in the System unit, you
can now use a set of easier-to-remember aliases for signed and unsigned integral data types.
These are the signed and unsigned predefined types in the compiler:

ShortInt Byte

SmallInt Word

Integer Cardinal

NativeInt NativeUInt

Int64 UInt64

These types were already in Delphi 2007 and previous versions, but the 64bit ones date back
only a few versions of the compiler. The NativeInt and NativeUInt types, which should
depend on the compiler version (32 bit and future 64 bit) were already in Delphi 2007, but, they
were not documented.

If you need a data type that will match the CPU native integer size, these are the types to use.
The Integer type, in fact, is expected to remain unchanged when moving from 32-bit to 64-bit
compilers.

Using New Delphi Coding Styles and Architectures

Embarcadero Technologies - 24 -

The following set of predefined aliases added by System unit is brand new in Delphi 2009:

type
 Int8 = ShortInt;
 Int16 = SmallInt;
 Int32 = Integer;
 UInt8 = Byte;
 UInt16 = Word;
 UInt32 = Cardinal;

Although they don't add anything new, they are probably easier to use because it is generally
hard to remember if a ShortInt is smaller than a SmallInt, and it is easy to remember the actual
implementation of Int16 or Int8.

CONCLUSION
I’ve outlined a few interesting things that were added to the Delphi language, but what makes a
huge difference in this version of the compiler is the support for generics, for anonymous
methods, and the combination of the two. These features don't merely extend the Delphi
language, but open it up for new programming paradigms beside the classic object-oriented
programming and event-driven programming approaches Delphi traditionally featured. The
ability of having classes parameterized on one or more data types and that of passing routines
as parameters open up new coding styles and new ways of architecting Delphi applications. The
language power is here in Delphi 2009, but it will take a while before libraries and components
start taking full advantage of these features. Still, with Delphi 2009, you can start working out
new coding techniques today.

ABOUT THE AUTHOR
This white paper has been written for Embarcadero Technologies by Marco Cantù, author of the
best-selling series, Mastering Delphi. The content has been extracted from his latest book,
“Delphi 2009 Handbook”, http://www.marcocantu.com/dh2009. You can read about Marco on
his blog (http://blog.marcocantu.com) and reach him at his e-mail address:
marco.cantu@gmail.com.

Embarcadero Technologies Inc., empowers application developers and database professionals
with tools to design, build, and run software applications in the environment they choose. A
community of more than three million worldwide, and 90 of the Fortune 100 rely on
Embarcadero tools to increase productivity, openly collaborate, and be free to innovate.
Founded in 1993, Embarcadero is headquartered in San Francisco, California, with offices
located around the world. Embarcadero is online at www.embarcadero.com. The company’s
flagship CodeGear tools include: Delphi®, C++Builder®, and JBuilder®.

