

Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

White Paper

The New DataSnap in Delphi 2009
Building Multi-Tier Applications without Using a COM Interface

By Marco Cantù

December 2008

The New DataSnap in Delphi 2009

Embarcadero Technologies - 1 -

INTRODUCTION
For a long time Delphi has included a technology for building multi-tier database applications.
Formerly known as MIDAS and later as DataSnap, Delphi's multi-tier technology was based on
COM, even if the remote connectivity could be provided by sockets and HTTP, instead of
DCOM. For some time, it even supported CORBA--a slightly modified version that provided
SOAP connectivity.

Delphi 2009 still includes the classic DataSnap, but provides a new remoting and multi-tier
technology as well. It is partially based on the dbExpress architecture. This new technology is
still called DataSnap, but to avoid confusion is generally referenced as “DataSnap 2009”.

BUILDING A DATASNAP 2009 DEMO
Before I get into too many details, let me start with a simple three-tier database-oriented demo.
This will help clarify a few points and also cover differences from the previous version.

BUILDING A SERVER
The first step is building a DataSnap 2009 server application. This can be a standard VCL
application, to which you add a server module (found in the Delphi Files page of the New Items
dialog box and not in the Multitier page):

Figure 1 Creating a Server Module in Delphi 2009

The New DataSnap in Delphi 2009

Embarcadero Technologies - 2 -

To the server module (but we could also have used a standard data module) you generally add
the dbExpress components to connect to the database server, plus a dataset provider to
expose the given datasets:

object IBCONNECTION: TSQLConnection
 ConnectionName = 'IBCONNECTION'
 DriverName = 'Interbase'
 LoginPrompt = False
 Params.Strings = (
 'DriverName=Interbase'
 'Database=C:\Program Files\...\Data\Employee.GDB')
end
object EMPLOYEE: TSQLDataSet
 CommandText = 'EMPLOYEE'
 CommandType = ctTable
 SQLConnection = IBCONNECTION
end
object DataSetProviderEmployee: TDataSetProvider
 DataSet = EMPLOYEE
end

This server module is built in a very similar way as it has been in the past. What is new is the
need to include three new components that provide configuration and connectivity in place of
the COM support (which is totally gone). The three components are:

• DSServer, the main server configuration component, which is needed to wire all the other

DataSnap 2009 components together.
• DSServerClass, a component needed for each class you want to expose. This component is

not the class you make available, but acts as a class factory to create objects of the class you
want to call from a remote client. In other words, the DSServerClass component will refer to
the class that has the public interface.

• DSTCPServerTransport, a component that defines the transport protocol to be used (this is
the only protocol directly available in Delphi 2009) and its configuration, such as which
TCP/IP port to use.

In the demo these components are in the main form of the server, configured as follows:

object DSServer1: TDSServer
 AutoStart = True
 HideDSAdmin = False
 OnConnect = DSServer1Connect
 OnDisconnect = DSServer1Disconnect
end
object DSTCPServerTransport1: TDSTCPServerTransport
 PoolSize = 0
 Server = DSServer1
 BufferKBSize = 32
end
object DSServerClass1: TDSServerClass
 OnGetClass = DSServerClass1GetClass
 Server = DSServer1
 LifeCycle = 'Session'
end

The New DataSnap in Delphi 2009

Embarcadero Technologies - 3 -

We'll get to some of the details of these properties later on. The reason you don't see the value
of the TCP/IP port in the listing above is that I've not modified the default value of 211.
The only Delphi code you need to write is the “class factory” code that you need to connect the
DSServerClass1 component to the server module exposing the providers:

procedure TFormFirst3Tier2009Server.
 DSServerClass1GetClass(DSServerClass: TDSServerClass;
 var PersistentClass: TPersistentClass);
begin
 PersistentClass := TDSFirst3TierServerModule;
end;

This is all you need for the server. I added a logging statement to the method above, as well as
to the event handlers of the OnConnect and OnDisconnect events of the DSServer
component.

Again, there is no need to register it in any way. Simply run it, maybe using the Run | Run
Without Debugging command in the Delphi IDE, so you can build the client and connect it to
the server even at design time.

THE FIRST CLIENT
Now that we have a server available, we can move on and build the first client. In the DataSnap
2009 client application, we need to use an SQLConnection component associated with the new
DataSnap dbExpress driver and configured with the proper TCP/IP port.

Next we need a DSProviderConnection component, used to refer to the server class, with the
ServerClassName property. This is not the intermediary class factory in the server
(DSServerClass1), but the actual target of the class factory. In my example, it is the
TDSFirst3TierServerModule class.

As with a traditional DataSnap application, the ClientDataSet component can use the provider
to fetch (and update) the remote dataset. First, you have to assign the RemoteServer
property of the ClientDataSet, picking the DSProviderConnection1 component from the
drop-down list. Next, you can select the DataSetProviderEmployee provider from the
drop down of the ProviderName property, populated with all exported DataSetProvider
components of the remote data module.

This is a summary of the properties of these components, including a DataSource used to
display the database table in a DBGrid:

object SQLConnection1: TSQLConnection
 DriverName = 'Datasnap'
end
object DSProviderConnection1: TDSProviderConnection
 ServerClassName = 'TDSFirst3TierServerModule'
 SQLConnection = SQLConnection1
end
object ClientDataSet1: TClientDataSet
 ProviderName = 'DataSetProviderEmployee'
 RemoteServer = DSProviderConnection1

The New DataSnap in Delphi 2009

Embarcadero Technologies - 4 -

end
object DataSource1: TDataSource
 DataSet = ClientDataSet1
end

That's all it takes for an introductory demo. Now if you run the server first and the client next,
you can press the Open button of the client and see the database data. Also notice the log
produced by the server, shown in Figure 2:

FROM DATASNAP TO DATASNAP 2009
Compared to the traditional DataSnap application, there are a few significant differences, more
related to the architecture and deployment than the actual code you have to write:

• There is no COM involved for the development of the server. Even if a client could already

use sockets in the past, a socket-to-Com mapping service was required on the server. Now
the client and server applications communicate directly over TCP/IP.

• As a side effect, you don't have to register the server, nor run any helper service on it. All the
server has to provide to the client is an open TCP/IP port the client can reach

• You must manually run the application on the server, or create a service for it. In the past the
COM support implied the server application would be started as needed.

• The server implementation is slightly more complicated in terms of components, but there is
very little code behind the scenes, as for the COM counterpart.

Figure 2 View Database Data as Well as Server Logs

The New DataSnap in Delphi 2009

Embarcadero Technologies - 5 -

• The client implementation is almost identical, as we need a standard SQLConnection
component, in place of a specific connection object.

• On the server side, the TDSServerModule class inherits from TDataModule, including
the IAppServer interface (the same interface used in the past by a COM-based
TRemoteDataModule) and enabling the $MethodInfo compiler directive.

• As the client-side dbExpress driver is a pure 100% Delphi driver, you don't need do deploy
any DLL on the client computer, even if you are using dbExpress for the connectivity.

Pay a lot of attention when closing the server application. Unlike in the COM architecture, which
warns you about pending connections, a DataSnap 2009 server will seem to close, but won't
until there are no remaining connections to it. However, even after the connections have been
closed it will remain running in memory, even if the main form is gone. You'll need to use Task
Manager (or Process Explorer) to terminate the server. You might think that closing all existing
client applications will be enough, but it is not: The Delphi IDE, in fact, can open a connection
to the server even automatically, for browsing its exposed classes and methods. Be sure to
close any SQLConnection to the server before stopping it.

ADDING SERVER METHODS
As in the past, you can write methods in the server that can be called by the client. These were
based on COM, so you had to add interfaces to the type library and implement them in the
server objects, and call the methods using COM dispatch interfaces on the client. In DataSnap
2009 the remote methods calls, or server method calls, are based on Delphi's RTTI. Notice,
however, that parameters passing is based on dbExpress parameter types, and not on Delphi
language types.

You can have multiple server side classes that expose methods, but to continue with the simple
project I've already built, I added an extra method to the server module class (in the server
application), using the following code:

type
 TDSFirst3TierServerModule = class(TDSServerModule)
 IBCONNECTION: TSQLConnection;
 EMPLOYEE: TSQLDataSet;
 DataSetProviderEmployee: TDataSetProvider;
 private
 { Private declarations }
 public
 function GetHello: string;
 end;

function TDSFirst3TierServerModule.GetHello: string;
begin
 Result := 'Hello from TDSFirst3TierServerModule at '
 + TimeToStr (Now);
end;

To enable remote invocation you have to connect the class for which you want to expose
methods to a DSServerClass factory. (In this case, we've already done so in the database
portion of the demo). The second requirement is to use a class that is compiled with the
$MethodInfo directive turned on, but this already takes place in the declaration of the base

The New DataSnap in Delphi 2009

Embarcadero Technologies - 6 -

TDSServerModule class. This means that, in practice, all we have to do is to add a public
method to the server module, and everything else will work.

How do we call this server method from the client application? There are basically two
alternatives. One is to use the new SqlServerMethod component and call the server method as
if it was a stored procedure. The second is to generate a proxy class in the client application
and use this proxy class to make the call.

In the following client demo I've implemented both approaches. For the first, I've added an
SqlServerMethod component to the form of the client, tied it to the connection, picked a value
for the ServerMethodName property in the Object Inspector (among the many available, as
the standard IAppServer interface methods are listed as well), and checked the value of the
Params property. This is a copy of the component settings (which actually include the result of
a sample call performed when checking the parameters):

object SqlServerMethod1: TSqlServerMethod
 GetMetadata = False
 Params = <
 item
 DataType = ftWideString
 Precision = 2000
 Name = 'ReturnParameter'
 ParamType = ptResult
 Size = 2000
 Value = 'Hello from TDSFirst3TierServerModule...'
 end>
 SQLConnection = SQLConnection1
 ServerMethodName = 'TDSFirst3TierServerModule.GetHello'
end

The native string type is mapped to a string parameter of 2,000 characters. After configuring the
SqlServerMethod component, the program can call it using the input parameters (none in this
case) and the output parameters (the result) as in a stored procedure or query call:

procedure TFormFirst3Tier2009Client.btnHelloClick(
 Sender: TObject);
begin
 SqlServerMethod1.ExecuteMethod;
 ShowMessage (SqlServerMethod1.Params[0].Value);
end;

To make it easier to write the calling code we can use the second approach I mentioned earlier,
creating a local proxy class in the client application. To accomplish this, we can ask the Delphi
IDE to parse the interface of the server class and create local proxy class for it, by clicking on the
SQLConnection component and selecting the command Generate Datasnap client classes. In
the case of this example, Delphi will generate a unit with the following class (from which I've
omitted the code of the constructors and the destructor):

type
 TDSFirst3TierServerModuleClient = class
 private
 FDBXConnection: TDBXConnection;

The New DataSnap in Delphi 2009

Embarcadero Technologies - 7 -

 FInstanceOwner: Boolean;
 FGetHelloCommand: TDBXCommand;
 public
 constructor Create(
 ADBXConnection: TDBXConnection); overload;
 constructor Create(
 ADBXConnection: TDBXConnection;
 AInstanceOwner: Boolean); overload;
 destructor Destroy; override;
 function GetHello: string;
 end;

function TDSFirst3TierServerModuleClient.GetHello: string;
begin
 if FGetHelloCommand = nil then
 begin
 FGetHelloCommand := FDBXConnection.CreateCommand;
 FGetHelloCommand.CommandType :=
 TDBXCommandTypes.DSServerMethod;
 FGetHelloCommand.Text :=
 'TDSFirst3TierServerModule.GetHello';
 FGetHelloCommand.Prepare;
 end;

 FGetHelloCommand.ExecuteUpdate;
 Result := FGetHelloCommand.Parameters[0].
 Value.GetWideString;
end;

The generated code doesn't use the high level SqlServerMethod component, but rather calls
directly into the low-level dbExpress implementation objects, like the TDBXCommand class.

Having this proxy class available, the client program can now call the server method in a more
language-friendly way, although we do need to create an instance of the proxy class (or create
one and keep it around). This code does exactly the same as the previous code based on the
SqlServerMethod component:

procedure TFormFirst3Tier2009Client.btnHelloClick(
 Sender: TObject);
begin
 with TDSFirst3TierServerModuleClient.Create(
 SQLConnection1.DBXConnection) do
 try
 ShowMessage (GetHello);
 finally
 Free;
 end;
end;

If the code is actually longer than the previous version, this is because the method we are
calling has no parameters, thus making the language binding code less relevant. Still, having a
ready-to-use proxy object, we could have written:

 ShowMessage (ServerProxyObject.GetHello);

The New DataSnap in Delphi 2009

Embarcadero Technologies - 8 -

SESSIONS AND THREADING WITH A NON-
DATABASE DATASNAP SERVER
If using the IAppServer interface directly is going to be the most common way for using
DataSnap 2009, it is possible to use this multi-tier technology for remote method invocation
outside of the database context. You can also use the same technology to access database data
or perform database operations without using the IAppServer interface, which is fine if all
you want to do is read data from the server. If you want to let the client application modify the
data and post it back to the server, using custom methods could become tedious compared to
the ready-to-use IAppServer interface, implemented by the ClientDataSet and the
DataSetProvider components.

In any case, in this second example, I want to create a minimal server exposing a couple of
simple classes. In the following sections I'll use this simple server to explore a couple of relevant
issues, like server memory management and server (and client) threading.

The first server class (with two methods) I want to publish in the DsnapMethodServer project is
the following:

{$MethodInfo ON}
type
 TSimpleServerClass = class(TPersistent)
 public
 function Echo (const Text: string): string;
 function SlowPrime (MaxValue: Integer): Integer;
 end;
{$MethodInfo OFF}

The code of the first method simply echoes the input, repeating its last part, while the second
method performs the most classic slow computation. This is the code of the two methods:

function TSimpleServerClass.Echo(
 const Text: string): string;
begin
 Result := Text + '...' +
 Copy (Text, 2, maxint) + '...' +
 Copy (Text, Length (Text) - 1, 2);
end;

function TSimpleServerClass.SlowPrime(
 MaxValue: Integer): Integer;
var
 I: Integer;
begin
 // counts the prime numbers below the given value
 Result := 0;
 for I := 1 to MaxValue do
 begin
 if IsPrime (I) then
 Inc (Result);
 end;

The New DataSnap in Delphi 2009

Embarcadero Technologies - 9 -

end;

I've omitted the extra statements used to log the server operations from the code snippet
above.

The server application has only one unit, which defines the main form and two server side
classes. The form has the usual DataSnap server components, a DSServer and a
DSTCPServerTransport, plus two DSServerClass component, one for each of the classes I want
to expose. After compiling the server and starting it, I've let Delphi create a client proxy using
the SQLConnection component of a new client application. This is the client proxy class:

type
 TSimpleServerClassClient = class
 private
 FDBXConnection: TDBXConnection;
 FInstanceOwner: Boolean;
 FEchoCommand: TDBXCommand;
 FSlowPrimeCommand: TDBXCommand;
 public
 constructor Create(
 ADBXConnection: TDBXConnection); overload;
 constructor Create(
 ADBXConnection: TDBXConnection;
 AInstanceOwner: Boolean); overload;
 destructor Destroy; override;
 function Echo(Text: string): string;
 function SlowPrime(MaxValue: Integer): Integer;
 end;

In the client program, the OnClick event of the button calls the Echo server method, after
creating an instance of the proxy, if needed:

procedure TFormDsnapMethodsClient.btnEchoClick(
 Sender: TObject);
begin
 if not Assigned (SimpleServer) then
 SimpleServer := TSimpleServerClassClient.Create (
 SQLConnection1.DBXConnection);
 Edit1.Text := SimpleServer.Echo(Edit1.Text);
end;

In the example, pressing this button the sample text “Marco” is transformed by the server call
into “Marco...arco...co”. This is a complete example of how you can create a totally custom
server, with no database access involved and no use of the IAppServer interface. This is not
the only method invocation technique available in Delphi, as you can use SOAP, socket-based
applications, or third-party tools... but having this extra feature on top of the remote database
access capability is certainly a plus.

One of the reasons I'm focusing on this example is it helps clarify some relevant features of
DataSnap 2009. One of them is how server side objects relate to client proxies or server method
invocation. This is better demonstrated by a server object that keeps track of its own state, like
the following second server class of the demo project:

The New DataSnap in Delphi 2009

Embarcadero Technologies - 10 -

{$MethodInfo ON}
type
 TStorageServerClass = class(TPersistent)
 private
 FValue: Integer;
 public
 procedure SetValue(const Value: Integer);
 function GetValue: Integer;
 function ToString: string; override;
 published
 property Value: Integer read GetValue write SetValue;
 end;
{$MethodInfo OFF}

While the getter and setter methods simply read and write the local field, the ToString
function returns both the value and an object identifier based on its hash code:

function TStorageServerClass.ToString: string;
begin
 Result := 'Value: ' + IntToStr (Value) +
 ' - Object: ' + IntToHex (GetHashCode, 4);
end;

I'll use this method to figure out how the life cycle of server objects work. In this class the
property definition only makes sense for the server as it is not exposed to the client. The
interface of the corresponding proxy becomes (after removing private fields, standard
constructors and destructor):

type
 TStorageServerClassClient = class
 public
 procedure SetValue(Value: Integer);
 function GetValue: Integer;
 function ToString: string;

Notice that compiling this class produces the following warning, unless you manually mark the
method as override:

Method 'ToString' hides virtual method of base type 'TObject'

The goal of this example is to figure out what happens when multiple client applications use the
same server. The behavior of a DataSnap 2009 server in such a case depends on the value of the
LifeCycle string property of the DSServerClass component being used.

The New DataSnap in Delphi 2009

Embarcadero Technologies - 11 -

SERVER OBJECTS LIFE CYCLE
The life cycle of DataSnap 2009 server objects depends on the corresponding setting of the
related DSServerClass component. The LifeCycle property of this component can assume
the following three string values (which are read from the DSServerClass components when the
DSServer object is opened, ignoring any change at runtime):

• Session indicates that the server will create a different object for each client socket

connection, that is, a server object for each client. The server objects are released when the
connection is closed. Multiple clients will have independent status and separate database
access in case the server object is a data module, maybe with its own database connection
component. This is the default setting.

• Invocation indicates that a new server object is created (and destroyed) every time the
server method is invoked. This is a classic stateless behavior, making the server extremely
scalable, but also subject to fetching the same data over and over.

• Server indicates a shared server object, a singleton. Each client will use the same server
object instance, the same data, potentially causing synchronization problems (as different
client invocations are performed by different server threads). Access to shared server
objects must be protected by synchronization techniques (for example using the new
TMonitor record).

Besides using these default settings, you can customize the creation and destruction of server
side objects using the OnCreateInstance and OnDestroyInstance events of the
DSServerClass component. This can be used to implement server-side object pooling.

A CLIENT STARTING THE SERVER AND OPENING MULTIPLE
CONNECTIONS
As a practical example, the DsnapMethods project lets you create multiple client connections
from a single instance of a client application (using multiple instances will yield the same result),
You can create multiple instances of the form that has the SQLConnection component and
store a local instance of the client proxy that is created the first time it is used. Not only can the
client create multiple client connections, but it can also start the server program with a given life
cycle setting. This is easy to achieve because the client and the server application are on the
same computer.

To accomplish this I've added to the unit of the main form of the server a global variable, used
to determine the DSServerClass LifeCycle property:

var
 ParamLifeCycle: string;

procedure TFormDsnapMethodsServer.DSServerClass2GetClass(
 DSServerClass: TDSServerClass;
 var PersistentClass: TPersistentClass);
begin
 DSServerClass2.LifeCycle := ParamLifeCycle;
 Log ('LifeCycle: ' + DSServerClass2.LifeCycle);
 PersistentClass := TStorageServerClass;
end;

The New DataSnap in Delphi 2009

Embarcadero Technologies - 12 -

The value of the ParamLifeCycle global variable is initialized using the command line
parameters of the server application, which has the following code at the beginning of its
project file source code:

begin
 if ParamCount > 0 then
 ParamLifeCycle := ParamStr(1);
 Application.Initialize;

With this code available on the server, the main form of the client application (which has no
connection, as the connection is configured in the secondary forms) has a RadioGroup with the
following values:

object rgLifeCycle: TRadioGroup
 ItemIndex = 0
 Items.Strings = (
 'Session'
 'Invocation'
 'Server')
end

When clicking on a button, the client program reads the current value and passes it as
parameter to the server (notice you cannot run the server twice, as you cannot have the same
listening socket at the same port opened by two applications at the same time on a computer):

procedure TFormDsmcMain.btnStartServerClick(
 Sender: TObject);
var
 aStr: AnsiString;
begin
 Log (rgLifeCycle.Items[rgLifeCycle.ItemIndex]);
 aStr := 'DsnapMethodsServer.exe ' +
 rgLifeCycle.Items[rgLifeCycle.ItemIndex];
 WinExec (PAnsiChar (aStr), CmdShow);
end;

Now the main form of the client application also has a button used to create instances of the
secondary form, which are destroyed when they are closed (in their OnClose event handler),
closing the specific connection to the server. Another button is used to log the status of the
current client forms:

procedure TFormDsmcMain.btnUpdateStatusClick(
 Sender: TObject);
var
 I: Integer;
begin
 for I := 0 to Screen.FormCount - 1 do
 if Screen.Forms[I].ClassType = TFormDsmcClient then
 Log (IntToStr (I) + ': ' +
 Screen.Forms[I].ToString);
end;

The New DataSnap in Delphi 2009

Embarcadero Technologies - 13 -

When calling ToString for one of the secondary forms, this returns the status of the
connected server object, calling its public ToString method:

function TFormDsmcClient.ToString: string;
begin
 InitStorageServer;
 Result := StorageServer.ToString;
end;

As a first execution example, I've created the server with the default Session life cycle, opened
two client forms, set the values to 3 and 4, and asked for the overall status, with this result:

Session
1: Value: 3 - Object: 1C38400
2: Value: 4 - Object: 1C384E0

In a second execution, I've gone for the Invocation life cycle, and asking for the overall status
twice I saw the following output:

Invocation
1: Value: 0 - Object: 1D185B0
2: Value: 0 - Object: 1D18490
1: Value: 0 - Object: 1D185C0
2: Value: 0 - Object: 1D185D0

Notice that you are getting a new object for each execution and the objects status is always
zero (and any setting will immediately be lost when the object is destroyed immediately after
each invocation). Needless to say, this makes sense only for stateless operations.

Finally, I've repeated the same steps (setting values to 3 and 4) with the Server life cycle setting,
and this time every client form uses the same server object, with the last value set:

Server
1: Value: 4 - Object: 1E08490
2: Value: 4 - Object: 1E08490

In other words, the practice shows... that the theory is correct! While exploring life cycle
configuration in the demo, we've also looked at an example of a client starting the (local) server
it needs and of a client with multiple concurrent connections to the server.

PORTING AN OLD DATASNAP DEMO
Having explored some of the alternatives with using DataSnap 2009, let me get back to the
most classic usage scenario, which is a multi-tier database application. We’ve already seen the
steps for creating a brand new DataSnap database application. Now let’s focus on an equally
relevant issue: porting an existing DataSnap (or MIDAS) application to this new architecture.

As a practical example, I've decided to port the ThinPlus application of Mastering Delphi 2005,
which showcases a few capabilities of DataSnap, and lets me cover a more complete example,
The example also focuses on what needs to be done to port a COM server invoked from a

The New DataSnap in Delphi 2009

Embarcadero Technologies - 14 -

client using a socket to a pure socket-based architecture. The new example (with server and
client projects) is in the ThinPlus2009 folder.

Notice that porting DataSnap applications to the new architecture is an interesting option, but
not a compulsory one. Traditional DataSnap servers and clients can still compile and work
properly in Delphi 2009.

(The program is described in detail in the book Mastering Delphi 2005, but also in previous
editions like Mastering Delphi 7. Here I'll provide only an overview of some of its features.
Those books can certainly give you a broader picture of the original features of DataSnap and
previously MIDAS, which are mostly still available in the Delphi 2009 version.)

PORTING THE SERVER
For porting the server project, I followed these steps:

• I removed the initialization section of the remote data module unit, called AppsRDM. The

code removed was the call to the constructor of the TComponentFactory class.
• I also removed the UpdateRegistry class method of the TAppServerPlus class from

the same remote data module unit.
• At that point I could eliminate from the uses clause of the remote data module the COM

and ActiveX related units: ComServ, ComObj, VCLCom, and StdVcl.
• Next I had to remove the reference to the custom IAppServerPlus interface that was

used by the project to provide custom server methods (the interface was defined in the
project type library).

• I deleted the type library and RIDL file (just created when the project was opened in Delphi
2009) from the project and the disk. I also had to remove a uses statement referring to the
type library unit.

• I moved the only server method (Login) from the protected section to the public section of
the remote data module class, removing from it the safecall modifier. As the
TRemoteDataModule class is already compiled with $MethodInfo turned on, there is
no need to add this declaration to the project unit.

• Finally, I added to the main form of the program the usual trio of components (server, server
class, and server transport), wired them together, and returned the TAppServerPlus in
the OnGetClass event handler of the server class component.

That was all it took to upgrade an old DataSnap server to the Delphi 2009 version. It might
seem a lot, but it was actually quite fast. Now it was time to look into the client application, one
that does a few custom operations.

UPGRADING THE CLIENT
Porting the client application to DataSnap 2009 is generally easier than porting the server. The
core step is to remove the connection components (my demo had three, as it let users
experiment with the various connectivity options) and replace it with an SQLConnection and a
DSProviderConnection, and make the ClientDataSet component refer to this new remote
connection component.

The New DataSnap in Delphi 2009

Embarcadero Technologies - 15 -

The only specific code I had to change was the call to the Login server method. This took
place in the OnAfterConnection of the connection component, and I've now moved it to
the corresponding event of the SQLConnection component:

procedure TClientForm.SQLConnection1AfterConnect(
 Sender: TObject);
begin
 // was: ConnectionBroker1.AppServer.
 // Login (Edit2.Text, Edit3.Text);
 SqlServerMethod1.ParamByName('Name').AsString :=
 Edit2.Text;
 SqlServerMethod1.ParamByName('Password').AsString :=
 Edit3.Text;
 SqlServerMethod1.ExecuteMethod;
end;

What this call does is to pass client login information to the server. The server validates the
information and, only if it succeeds, it will let the provider expose its data. The password check
is trivial, but the approach could be interesting. This is the Login method on the server:

procedure TAppServerPlus.Login(
 const Name, Password: WideString);
begin
 if Password <> Name then
 raise Exception.Create (
 'Wrong name/password combination received');
 ProviderDepartments.Exported := True;
 ServerForm.Add ('Login:' + Name + '/' + Password);
end;

Notice that in case the server returns an exception this will be clearly displayed (indicating
where it comes from, Remote error) on the client side, shown in Figure 3:

Figure 3 Clear Error Messaging for Remote Errors

The New DataSnap in Delphi 2009

Embarcadero Technologies - 16 -

ADVANCED FEATURES OF THINPLUS2009
I upgraded the ThinPlus client and server applications to DataSnap 2009 following the steps
mentioned earlier, even if these are some rather complex DataSnap programs, with several
customizations. These include fetching data packets manually, using a master/details structure,
executing a parametric query, transferring extra data along with the data packets, and the
custom remote login I've just covered.

It is worth having a look at these features, even if briefly, as they should help those of you that
have never used DataSnap (or not a lot) to appreciate its power. Those who have used it already
will figure out how easily the code can be ported to the new architecture. The server application
defined a master/details structure, based on the following settings of the (respectively) provider,
the master data set, the data source used to refer to it, and the details dataset that refers to the
data source:

object ProviderDepartments: TDataSetProvider
 DataSet = SQLDepartments
end
object SQLDepartments: TSQLDataSet
 CommandText = 'select * from DEPARTMENT'
 SQLConnection = SQLConnection1
end
object DataSourceDept: TDataSource
 DataSet = SQLDepartments
end
object SQLEmployees: TSQLDataSet
 CommandText =
 'select * from EMPLOYEE where dept_no = :dept_no'
 DataSource = DataSourceDept
 Params = <
 item
 Name = 'dept_no'
 ParamType = ptInput
 end>
 SQLConnection = SQLConnection1
end

On the client side, the program uses a first ClientDataSet connected with the provider and a
second ClientDataSet that refers to a special data set field of the first one:

object cds: TClientDataSet
 FetchOnDemand = False
 PacketRecords = 5
 ProviderName = 'ProviderDepartments'
 RemoteServer = DSProviderConnection1
 object cdsDEPT_NO: TStringField...
 object cdsDEPARTMENT: TStringField...
 ...
 object cdsSQLEmployees: TDataSetField
 FieldName = 'SQLEmployees'
 end
end
object cdsDet: TClientDataSet

The New DataSnap in Delphi 2009

Embarcadero Technologies - 17 -

 DataSetField = cdsSQLEmployees
end

The data of the two ClientDataSet components is displayed in two DBGrid controls. Notice how
the program fetches only 5 records (as indicated in the PacketRecords property) in each
data packet, and will stop fetching data after the first packet (as the FetchOnDemand
property is False), even if the grid in not full. You can see this in the following snapshot of the
client user interface just after opening the connection, shown in Figure 4:

Following data packets are fetched manually, as the user clicks the corresponding button:

procedure TClientForm.btnFetchClick(Sender: TObject);
begin
 btnFetch.Caption := IntToStr (cds.GetNextPacket);
end;

In the button caption, the program shows how many records it fetched in each packet. This will
be 5 while there are enough records, then the number or remaining records, and finally zero
when all the records have already been retrieved. At each fetch request the client DBGrid will
show more data, and its scrollbar will be updated accordingly. You can also use the
bntRecCount button to ask how many records have been retrieved so far.

Figure 4 Client Interface of the ThinPlus Application

The New DataSnap in Delphi 2009

Embarcadero Technologies - 18 -

The client program has a second form, displayed by pressing the Query button, with another
client dataset. This ClientDataSet component is connected with a parametric query defined by
the server as:

object SQLWithParams: TSQLDataSet
 CommandText =
 'select * from employee where job_code = :job_code'
 Params = <
 item
 DataType = ftString
 Name = 'job_code'
 ParamType = ptInput
 Value = 'Eng'
 end>
 SQLConnection = SQLConnection1
end

The client program has a list box, filled at design time with the department names, which is
used to pass the proper parameter to the server. Notice that to write this code you have first to
update the definition of the parameters, an operation you can do at design time by using the
corresponding component editor command for the ClientDataSet component. This is the call
used on the client to execute the remote parametric query:

procedure TFormQuery.btnParamClick(Sender: TObject);
begin
 cdsQuery.Close;
 cdsQuery.Params[0].AsString := ComboBox1.Text;
 cdsQuery.Open;
 ...

On the server, when this query is executed the OnGetDataSetProperties event of the
provider adds extra information to the returned data packet:

procedure TAppServerPlus.
 ProviderQueryGetDataSetProperties(Sender: TObject;
 DataSet: TDataSet; out Properties: OleVariant);
begin
 Properties := VarArrayCreate([0,1], varVariant);
 Properties[0] := VarArrayOf(['Time', Now, True]);
 Properties[1] := VarArrayOf([
 'Param', SQLWithParams.Params[0].AsString, False]);
end;

Notice that the use of variant array parameters still works, even if the transport mechanism used
by DataSnap 2009 is now different. On the client side, the btnParamClick event handler has
two more lines of code to retrieve these extra properties from the data packet:

 Caption := 'Data sent at ' + TimeToStr (
 TDateTime (cdsQuery.GetOptionalParam('Time')));
 Label1.Caption := 'Param ' +
 cdsQuery.GetOptionalParam('Param');

The New DataSnap in Delphi 2009

Embarcadero Technologies - 19 -

There are a few more features in DataSnap that have been moved over to the new version, but
this overview of the ThinPlus2009 program (mostly unchanged from its original version written in
Delphi 6) should be enough for my goals: Show you the power of DataSnap and how easy it is
to migrate even a complex application to the Delphi 2009 socket-based (and COM-free) version
of DataSnap.

CONCLUSION
In this paper I’ve covered one the most significant updates in terms of the component library in
Delphi 2009: the new DataSnap architecture for building multi-tier applications without having
to resort to COM. You can use DataSnap 2009 for database programming, but also to easily call
any server-side method.

Multitier applications based on sockets and with no need for COM registration either at the
client or the server-side simplify deployment and make it easier to work with firewalls. DataSnap
2009 leverages the existing DataSnap architecture, a very powerful multi-tier architecture that
allows you deploy some of the business logic in the middle tier, opening it up to a more
modern (and native) approach. The new DataSnap in Delphi 2009 offers foundations for future
extensions, like an HTTP transport protocol.

Finally, the recently shipping Delphi Prim (and new Delphi for .NET development environment
by CodeGear) has the ability to create client applications for DataSnap 2009. As an example,
you could create an ASP.NET project that connects to a database through a DataSnap 2009
server written in Delphi and compiled for Win32.

It is likely that further extensions will let you use DataSnap for moving data and issuing requests
in other scenarios, but the current TCP/IP architecture is already a solid foundation that makes
DataSnap 2009 a more flexible solution that its previous version and of many competing
approaches.

ABOUT THE AUTHOR
This white paper has been written for Embarcadero Technologies by Marco Cantù, author of the
best-selling series Mastering Delphi. The content has been extracted from his latest book
“Delphi 2009 Handbook”, http://www.marcocantu.com/dh2009. You can read about Marco on
his blog (http://blog.marcocantu.com) and reach him at his email address:
marco.cantu@gmail.com.

Embarcadero Technologies, Inc. empowers application developers and database professionals
with award-winning tools to design, build and run software applications in the environment they
choose. With the acquisition of CodeGear from Borland® Software Inc. in 2008, Embarcadero
now serves more than three million professionals worldwide with tools that are both
interoperable and integrated. From individual software vendors (ISVs) and developers to DBAs,
database professionals and large enterprise teams, Embarcadero’s tools are used in the most
demanding vertical industries in 29 countries and by 90 of the Fortune 100. The company’s
flagship tools include: Embarcadero® Change Manager™, CodeGear™ RAD Studio,
DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid SQL®. Founded in 1993, Embarcadero is
headquartered in San Francisco, with offices located around the world. For more information,
visit www.embarcadero.com.

